Devoir surveillé 7 (CCINP)

Calculatrices interdites.

Le sujet est composé de deux exercices et d'un problème, tous indépendants.

Exercice I

Dans cet exercice, il est inutile de reproduire tous les calculs sur la copie.

On considère la matrice $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$

- Q1. Justifier, sans calcul, que la matrice A est diagonalisable puis déterminer une matrice D diagonale réelle et une matrice $P \in GL_3(\mathbb{R})$ telles que $A = PDP^{-1}$
- **Q2.** Déterminer une matrice B de $\mathcal{M}_3(\mathbb{R})$, que l'on explicitera, vérifiant $B^2 = A$
- **Q3.** Déterminer, pour tout entier naturel non nul n, les 9 coefficients de la matrice A^n en utilisant la matrice de passage P
- **Q4.** Donner le polynôme minimal de la matrice A et en déduire, a l'aide d'une division euclidienne de polynômes, la matrice A^n comme une combinaison linéaire des matrices A et I_3 .

Exercice II

On considère l'espace vectoriel normé $\mathcal{M}_n(\mathbb{R})$. On note $\mathrm{GL}_n(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.

- **Q5.** L'ensemble $\mathrm{GL}_n(\mathbb{R})$ est-il fermé dans $\mathscr{M}_n(\mathbb{R})$?
- **Q6.** Démontrer que l'ensemble $GL_n(\mathbb{R})$ est ouvert dans $\mathcal{M}_n(\mathbb{R})$.
- **Q7.** Soit M un élément de $\mathcal{M}_n(\mathbb{R})$, justifier que :

$$\exists \rho > 0, \quad \forall \lambda \in]0, \rho[, \quad M - \lambda I_n \in GL_n(\mathbb{R})$$

Démontrer que l'ensemble $\mathrm{GL}_n(\mathbb{R})$ est dense dans $\mathscr{M}_n(\mathbb{R})$

 $\mathbf{Q8.}$ Application :

Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, démontrer que les matrices A.B et B.A ont le même polynôme caractéristique.

A l'aide des matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, prouver que le résultat n'est pas vrai pour les polynômes minimaux.

Q9. Démontrer que $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.

Problème

Dans ce problème, E est un espace vectoriel euclidien muni d'un produit scalaire que l'on notera $\langle \ | \ \rangle$ de norme associée $\|.\|$.

Un endomorphisme u de E est une similitude de E lorsqu'il existe un réel k > 0 tel que pour tout vecteur x de E, ||u(x)|| = k||x||. On dira que u est une similitude de rapport k.

On notera Sim(E), l'ensemble des similitudes de E et O(E) désigne l'ensemble des isométries vectorielles de E.

L'objectif de ce problème est de définir et de caractériser les similitudes d'un espace euclidien.

Partie I - Exemples, propriétés

- **Q10.** Démontrer que la matrice $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$ est, dans la base canonique de \mathbb{R}^2 , la matrice d'une similitude u dont on précisera le rapport.
- Q11. Interprétation géométrique avec la similitude u de la question précédente : Le plan \mathbb{R}^2 est rapporté à un repère orthonormé $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$. On considère les trois points

$$M(2,1), N(4,1), P(4,2)$$
 et on définit les points M', N', P' par les relations

$$u(\overrightarrow{OM}) = \overrightarrow{OM}, \ u(\overrightarrow{ON}) = \overrightarrow{ON'}, \ u(\overrightarrow{OP}) = \overrightarrow{OP'}$$

Représenter les triangles MNP et M'N'P' et comparer leurs aires.

- **Q12.** Démontrer que tout élément de Sim(E) est bijectif et établir que Sim(E), muni de la loi de composition, est un groupe.
- Q13. On rappelle qu'une homothétie vectorielle de E est une application de la forme α id $_E$. Démontrer que $u \in \text{Sim}(E)$, si et seulement si, u est la composée d'une homothétie vectorielle non nulle de E et d'un élément de O(E)
- ${f Q14.}$ Exemple :

Écrire la matrice $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$ comme produit de la matrice d'une homothétie vectorielle et de la matrice d'une isométrie vectorielle de \mathbb{R}^2 dont on précisera la nature.

Q15. Soient u un endomorphisme de E, \mathscr{B} une base orthonormée de E et A la matrice de u dans la base \mathscr{B}

Démontrer que u est une isométrie vectorielle de E, si et seulement si, $A^{\top}A = I_n$ Caractériser par une relation matricielle les similitudes de rapport k.

Q16. Exemple :

Démontrer que la matrice $A = \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix}$ est la matrice dans la base canonique de

 \mathbb{R}^3 d'une similitude u dont on donnera le rapport.

Donner la matrice de la similitude u^{-1} .

Vérifier que, pour tout élément f de $O(E), u^{-1} \circ f \circ u \in O(E)$

Q17. On appelle sphère de centre 0 et de rayon r > 0, l'ensemble des vecteurs x de E tels que ||x|| = r.

Démontrer que si u est un endomorphisme de E tel que l'image par u de toute sphère de E de centre 0 est une sphère de E de centre 0, alors u est une similitude de E. On pourra remarquer que pour y vecteur non nul, $\left\|\frac{y}{\|y\|}\right\| = 1$.

2/3

Partie II - Assertions équivalentes

Q18. Démontrer que :

$$\forall (x,y) \in E^2, \langle x \mid y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

En déduire que u est une similitude de rapport k, si et seulement si

$$\forall (x,y) \in E^2, \langle u(x) \mid u(y) \rangle = k^2 \langle x \mid y \rangle$$

Q19. Démontrer que, si u est une similitude de rapport k, alors, pour tout couple (x,y) de vecteurs de E

$$\langle x \mid y \rangle = 0 \Rightarrow \langle u(x) \mid u(y) \rangle = 0$$

On dit que l'endomorphisme u conserve l'orthogonalité.

Réciproquement, on suppose que u est un endomorphisme de E conservant l'orthogonalité.

Soit (e_1, e_2, \ldots, e_n) une base orthonormée de E.

Démontrer que : $\forall (i,j) \in [1,n]^2$, $\langle e_i + e_j | e_i - e_j \rangle = 0$, puis que : $\forall (i,j) \in [1,n]^2$, $||u(e_i)|| = 0$ $\|u\left(e_{i}\right)\|$

On note k la valeur commune prise par tous les $||u(e_i)||$.

Après avoir justifié que, pour tout $i \in [1, n], ||u(e_i)|| = k ||e_i||$ démontrer que u est une similitude de rapport k.

Q20. Soit u une application de E dans E (non supposée linéaire) telle qu'il existe un réel k > 0pour lequel:

$$\forall (x,y) \in E^2, \langle u(x) \mid u(y) \rangle = k^2 \langle x \mid y \rangle$$

Démontrer que u est un endomorphisme de E, puis que u est une similitude de E.