1) La fonction f est de classe \mathscr{C}^{∞} sur I comme quotient de fonctions \mathscr{C}^{∞} dont le dénominateur ne s'annule pas sur I et, pour tout $x \in I$,

$$f'(x) = \frac{(\cos x)^2 + \sin(x)(\sin(x) + 1)}{(\cos x)^2} = \frac{1 + \sin x}{(\cos x)^2},$$

$$f''(x) = \frac{(\cos x)^3 + 2\sin x \cos x(1 + \sin x)}{(\cos x)^4} = \frac{(\cos x)^2 + 2\sin x + 2(\sin x)^2}{(\cos x)^3}$$

$$= \frac{(\sin x)^2 + 2\sin x + 1}{(\cos x)^3}$$

$$f^{(3)}(x) = \frac{(2\cos x \sin x + 2\cos x)(\cos x)^3 + 3\sin x(\cos x)^2((\sin x)^2 + 2\sin x + 1)}{(\cos x)^6}$$

$$= \frac{2(\cos x)^2 \sin x + 2(\cos x)^2 + 3(\sin x)^3 + 6(\sin x)^2 + 3\sin x}{(\cos x)^4}$$

$$= \frac{(\sin x)^3 + 4(\sin x)^2 + 5\sin x + 2}{(\cos x)^4}.$$

- 2) Montrons par récurrence que, pour tout $n \in \mathbb{N}$, il existe un polynôme $P_n \in \mathbb{R}[X]$ tel que pour tout $x \in I$, $f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos x)^{n+1}}$.
 - Initialisation : D'après la question précédente, $P_0 = X+1$, $P_1 = X+1$, $P_2 = X^2+2X+1$ et $P_3 = X^3+4X^2+5X+2$ conviennent.
 - Hérédité : Soit $n \in \mathbb{N}$. et supposons la propriété vérifiée au rang n Alors, pour tout $x \in I$,

$$f^{(n+1)}(x) = (f^{(n)})'(x) = \left(\frac{P_n(\sin x)}{(\cos x)^{n+1}}\right)'$$

$$= \frac{\cos x P_n'(\sin x)(\cos x)^{n+1} + (n+1)\sin x(\cos x)^n P_n(\sin x)}{(\cos x)^{2n+2}}$$

$$= \frac{(\cos x)^2 P_n'(\sin x) + (n+1)\sin x P_n(\sin x)}{(\cos x)^{n+2}}$$

$$= \frac{(1 - (\sin x)^2) P_n'(\sin x) + (n+1)\sin x P_n(\sin x)}{(\cos x)^{n+2}}$$

$$= \frac{P_{n+1}(\sin x)}{(\cos x)^{n+2}}$$

On a posé $P_{n+1} = (1 - X^2)P'_n + (n+1)XP_n \in \mathbb{R}[X].$

— Conclusion : D'où l'existence d'une suite $(P_n)_{n\in\mathbb{N}}$ d'éléments de $\mathbb{R}[]$ telle que pour tout $x\in I$,

$$f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos x)^{n+1}}$$

De plus, cette suite vérifie $P_{n+1} = (1 - X^2)P'_n + (n+1)XP_n$ pour tout $n \in \mathbb{N}$.

3) Montrons d'abord l'unicité de la suite (P_n) . L'article défini "le" de l'énoncé semble indiquer qu'elle est demandée.

Soit $n \in \mathbb{N}$ et supposons qu'il existe deux polynômes P_n et Q_n tels que pour tout $x \in I$,

$$f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos x)^{n+1}} = \frac{Q_n(\sin x)}{(\cos x)^{n+1}}$$

Alors, pour tout $x \in I$, $(P_n - Q_n)(\sin x) = 0$, donc, comme $\sin(I) =]-1, 1[$, pour tout $t \in]-1, 1[$, $(P_n - Q_n)(t) = 0$, donc $P_n - Q_n$ a une infinité de racines, donc $P_n - Q_n = 0$, donc $P_n = Q_n$. Il y a donc bien unicité de la suite $(P_n)_{n \in \mathbb{N}}$.

Montrons par récurrence que, pour tout $n \in \mathbb{N}^*$, P_n est unitaire, de degré n et que ses coefficients sont des entiers naturels.

- Initialisation : Pour n = 1, $P_1 = X + 1$. Il est bien unitaire à coefficients dans \mathbb{N} et $\deg(P_1) = 1$.
- Hérédité : Soit $n \ge 1$ et supposons l'hypothèse de récurrence vérifiée au rang n. Il existe donc $(a_0, \ldots, a_{n-1}) \in \mathbb{N}^n$ tel que $P_n = X^n + \sum_{k=0}^{n-1} a_k X^k$ et, par suite,

$$\begin{split} P_{n+1} &= (1-X^2)P_n' + (n+1)XP_n \\ &= (1-X^2)\left(nX^{n-1} + \sum_{k=1}^{n-1}ka_kX^{k-1}\right) + (n+1)X\left(X^n + \sum_{k=0}^{n-1}a_kX^k\right) \\ &= nX^{n-1} + \sum_{k=1}^{n-1}ka_kX^{k-1} - nX^{n+1} - \sum_{k=1}^{n-1}ka_kX^{k+1} + (n+1)X^{n+1} + \sum_{k=0}^{n-1}(n+1)a_kX^{k+1} \\ &= X^{n+1} + nX^{n-1} + \sum_{k=0}^{n-2}(k+1)a_{k+1}X^k + (n+1)a_0X + \sum_{k=1}^{n-1}\underbrace{(n+1-k)a_k}_{a_k}X^{k+1} \end{split}$$

- On vérifie alors que P_{n+1} est unitaire de degré n+1 et à coefficients dans \mathbb{N} .
- Conclusion : Par récurrence, pour tout $n \in \mathbb{N}^*$, P_n est unitaire, de degré n et que ses coefficients sont des entiers naturels.
- 4) Pour tout $x \in I$,

$$f(x)^{2} + 1 = \frac{(\sin x + 1)^{2}}{(\cos x)^{2}} + 1 = \frac{(\sin x)^{2} + 2\sin x + 1 + (\cos x)^{2}}{(\cos x)^{2}} = \frac{2 + 2\sin x}{(\cos x)^{2}} = 2f'(x).$$

5) En appliquant la relation obtenue dans la question précédente en x = 0, on obtient

$$2f'(0) = (f(0))^2 + 1$$
, d'où $2\alpha_1 = \alpha_0^2 + 1$.

Pour tout $n \in \mathbb{N}^*$, en dérivant n fois la relation obtenue à la question précédente, on obtient, via la formule de Leibniz que pour tout $x \in I$,

$$2f^{(n+1)}(x) = 2(f')^{(n)}(x) = \left((f(x))^2 + 1\right)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} (f(x))^{(k)} (f(x))^{(n-k)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) f(x)^{(n-k)}(x).$$

En appliquant alors en 0, on a bien la relation demandée.

6) La fonction f est de classe \mathscr{C}^{∞} sur I, donc, pour tout $N \in \mathbb{N}$, on peut lui appliquer la formule de Taylor avec reste intégral et on a, pour tout $x \in [0, \pi/2[$,

$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)x^n}{n!} + \int_0^x \frac{(x-t)^N}{N!} f^{(N+1)}(t) dt$$
$$= \sum_{n=0}^{N} \frac{\alpha_n}{n!} x^n + \int_0^x \frac{(x-t)^N}{N!} \frac{P_{N+1}(\sin t)}{(\cos t)^{N+2}} dt.$$

Or, pour tout $x \in [0, \pi/2[$, pour tout $t \in [0, x]$, $\frac{(x-t)^N}{N!} \geqslant 0$, $(\cos t)^{N+2} \geqslant 0$ (car $t \in [0, \pi/2[$) et, comme P_{N+1} est à coefficients positifs et $\sin t \geqslant 0$, $P_{N+1}(\sin t) \geqslant 0$. On a donc $\frac{(x-t)^N}{N!} \frac{P_{N+1}(\sin t)}{(\cos t)^{N+2}} \geqslant 0$ pour tout $t \in [0, x]$, donc, par positivité de l'intégrale $(x \geqslant 0)$,

$$f(x) - \sum_{n=0}^{N} \frac{\alpha_n}{n!} x^n = \int_0^x \frac{(x-t)^N}{N!} \frac{P_{N+1}(\sin t)}{(\cos t)^{N+2}} dt \ge 0,$$

donc $\sum_{n=1}^{N} \frac{\alpha_n}{n!} x^n \leqslant f(x)$.

- Pour tout $n \in \mathbb{N}$, comme $\alpha_n = f^{(n)}(0) = \frac{P_n(\sin 0)}{(\cos 0)^{n+1}} = P_n(0)$, α_n est le coefficient constant de P_n , donc un élément de \mathbb{N} (même pour n=0 car $P_0=X+1$), donc positif. Pour tout $x\in[0,\pi/2[$ la série numérique $\sum_{n\geqslant 0}\frac{\alpha_n}{n!}x^n$ est donc à termes positifs. Ses sommes partielles sont majorée par f(x) d'après la question précédente. On en déduit que la série $\sum_{n=0}^{\infty} \frac{\alpha_n}{n!} x^n$ converge. Ceci étant valable pour tout $x \in [0, \pi/2]$, on a bien $R \ge \pi/2$.
- Pour tout $x \in I$, |x| < R, donc, par produit de Cauchy de séries entières à l'intérieur du disque de convergence,

$$(g(x))^{2} + 1 = \left(\sum_{n=0}^{+\infty} \frac{\alpha_{n}}{n!} x^{n}\right)^{2} + 1$$

$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{\alpha_{k}}{k!} \frac{\alpha_{n-k}}{(n-k)!}\right) x^{n} + 1$$

$$= \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \alpha_{k} \alpha_{n-k}\right) x^{n} + 1$$

$$= \alpha_{0}^{2} + 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} \left(\sum_{k=0}^{n} \binom{n}{k} \alpha_{k} \alpha_{n-k}\right) x^{n}$$

$$= 2\alpha_{1} + \sum_{n=1}^{+\infty} \frac{2\alpha_{n+1}}{n!} x^{n} = 2\sum_{n=0}^{+\infty} (n+1) \frac{\alpha_{n+1}}{(n+1)!} x^{n}$$

$$= 2g'(x).$$

Soit $\varphi = \arctan \circ f$ et $\psi = \arctan \circ g$. Pour tout $x \in I$,

$$\varphi'(x) = \frac{f'(x)}{(f(x))^2 + 1} = \frac{1}{2} \text{ et } \psi'(x) = \frac{g'(x)}{(g(x))^2 + 1} = \frac{1}{2}$$

d'après les relations établies aux questions4) et 8). De plus,

$$\varphi(0) = \arctan(f(0)) = \arctan(1) = \pi/4$$

et

$$\psi(0) = \arctan(g(0)) = \arctan(\alpha_0) = \arctan(f(0)) = \pi/4$$

On en déduit que pour $x \in I$,

$$\varphi(x) = \frac{\pi}{4} + \frac{x}{2} = \psi(x)$$

Par suite, $f = \tan(\varphi) = \tan(\psi) = g \text{ sur } I$.

Supposons par l'absurde que R est strictement supérieur à $\frac{\pi}{2}$. La fonction g est continue sur]-R,R[, donc en particulier en $x = \pi/2$. Or

$$\lim_{x \to \pi/2^{-}} g(x) = \lim_{x \to \pi/2^{-}} f(x) = \lim_{x \to \pi/2^{-}} \frac{\sin x + 1}{\cos x} = +\infty$$

La fonction g n'est pas continue en $\pi/2$, donc $R \leq \pi/2$. En utilisant alors la question 7) on a bien

- Raisonnons par analyse-synthèse : soit $h: I \to \mathbb{R}$.
 - Analyse: S'il existe p paire et i impaire telle que h = p + i sur I, alors pour tout $x \in I$,

$$h(x) = p(x) + i(x)$$
 et $h(-x) = p(-x) + i(-x) = p(x) - i(x)$,

donc
$$p(x) = \frac{h(x) + h(-x)}{2}$$
 et $i(x) = \frac{h(x) - h(-x)}{2}$.

- Synthèse : Réciproquement, soit $p:x\in I\mapsto \frac{h(x)+h(-x)}{2}$ et $i:x\in I\mapsto \frac{h(x)-h(-x)}{2}$. Alors on vérifie que p est paire, i est impaire et h = p + i.
- Conclusion: D'où, par analyse-synthèse, l'existence et l'unicité demandées.
- 12) Pour tout $x \in I$,

$$f(x) = \frac{1}{\cos x} + \frac{\sin x}{\cos x}$$

où $x\mapsto \frac{1}{\cos x}$ est paire et $x\mapsto \frac{\sin x}{\cos x}$ est impaire. Par ailleurs, pour tout $x\in I$, comme les séries qui aparaissent ci-dessous convergent,

$$f(x) = g(x) = \sum_{n=0}^{+\infty} \frac{\alpha_n}{n!} x^n = \sum_{n=0}^{+\infty} \frac{\alpha_{2n}}{(2n)!} x^{2n} + \sum_{n=0}^{+\infty} \frac{\alpha_{2n+1}}{(2n+1)!} x^{2n+1}$$

où $x \mapsto \sum_{n=0}^{+\infty} \frac{\alpha_{2n}}{(2n)!} x^{2n}$ est paire et $x \mapsto \sum_{n=0}^{+\infty} \frac{\alpha_{2n+1}}{(2n+1)!} x^{2n+1}$ est impaire.

D'après l'unicité de la décomposition prouvée à la question précédente, on a

$$\forall x \in I$$
, $\tan(x) = \sum_{n=0}^{+\infty} \frac{\alpha_{2n+1}}{(2n+1)!} x^{2n+1}$ et $\frac{1}{\cos x} = \sum_{n=0}^{+\infty} \frac{\alpha_{2n}}{(2n)!} x^{2n}$.

13) La fonction tan est développable en série entière sur I, donc coïncide avec sa série de Taylor $\sum_{n=0}^{+\infty} \frac{\tan^{(n)}(0)}{n!} x^n \text{ sur } I, \text{ donc, par unicité du développement en série entière de tan sur } I, \text{ on a,}$ pour tout $n \in \mathbb{N}$,

$$\tan^{(2n)}(0) = 0 \text{ et } \tan^{(2n+1)}(0) = \alpha_{2n+1}.$$

- 14) Pour tout $x \in I$, $\tan'(x) = 1 + (\tan x)^2$, donc $t' = 1 + t^2$.
- 15) Pour tout $x \in I$,

$$t'(x) = \sum_{n=0}^{+\infty} (2n+1) \frac{\alpha_{2n+1}}{(2n+1)!} x^{2n} = \sum_{n=0}^{+\infty} \frac{\alpha_{2n+1}}{(2n)!} x^{2n}$$

Par produit de Cauchy de série entières sur le disque ouvert de convergence, on a aussi, pour tout $x \in I$

$$t'(x) = (t(x))^{2} + 1 = \left(\sum_{n=0}^{+\infty} \frac{\tan^{(n)}(0)}{n!} x^{n}\right)^{2} + 1$$
$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{\tan^{(k)}(0)}{k!} \frac{\tan^{(n-k)}(0)}{(n-k)!}\right) x^{n} + 1.$$

D'où, par unicité du développement en série entière de t' sur I, on a, $\alpha_1 = 0 + 1 = 1$ et, pour tout $n \ge 1$,

$$\frac{\alpha_{2n+1}}{(2n)!} = \sum_{k=0}^{2n} \frac{\tan^{(k)}(0)}{k!} \frac{\tan^{(2n-k)}(0)}{(2n-k)!}$$

$$= \frac{1}{(2n)!} \sum_{k=0}^{2n} {2n \choose k} \tan^{(k)}(0) \tan^{(2n-k)}(0)$$

$$= \frac{1}{(2n)!} \sum_{k=0}^{2n} {2n \choose k} \underbrace{\tan^{(k)}(0)}_{=0} \tan^{(2n-k)}(0) + \frac{1}{(2n)!} \sum_{k=0}^{2n} {2n \choose k} \tan^{(k)}(0) \tan^{(2n-k)}(0)$$

$$= \frac{1}{(2n)!} \sum_{k=1}^{n} {2n \choose 2k-1} \tan^{(2k-1)}(0) \tan^{(2n-(2k-1))}(0)$$

$$= \frac{1}{(2n)!} \sum_{k=1}^{n} {2n \choose 2k-1} \alpha_{2k-1} \alpha_{2n-2k+1}$$

donc, en multipliant de part et d'autre par (2n)!, on a bien :

$$\forall n \in \mathbb{N}^*, \quad \alpha_{2n+1} = \sum_{k=1}^n \binom{2n}{2k-1} \alpha_{2k-1} \alpha_{2n-2k+1}.$$