Soit E un \mathbb{R} -espace vectoriel de dimension finie notée n.

Soit f un endomorphisme non nul de E tel qu'il existe un entier p > 1 tel que $f^p = 0_{\mathscr{L}(E)} \neq f^{p-1}$.

Partie I

- 1. Déterminer les réels a_1, \ldots, a_{p-1} tels que $\sqrt{1+x} = 1 + a_1x + \ldots + a_{p-1}x^{p-1} + o_{x\to 0}(x^{p-1})$. Exprimer ces coefficients à l'aide de factorielles. Dans la suite, on notera P_p le polynôme $1 + a_1X + \ldots + a_{p-1}X^{p-1}$.
- 2. Que dire de $1 + x P_p^2(x)$ quand x tend vers 0? En déduire que le polynôme $1 + X P_p^2$ est divisible par X^p .
- 3. Montrer que le polynôme minimal de f, noté Π_f , est égal à X^p .
- 4. Montrer qu'en posant $g = P_p(f)$, on a $g^2 = id_E + f$.
- 5. Application numérique :

On pose
$$A = \begin{pmatrix} -5 & 9 & 2 \\ -3 & 5 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$
.

En utilisant ce qui précède, trouver une matrice B telle que $B^2 = I_3 + A$.

Partie II

- 6. Montrer qu'il existe $x_0 \in E$ tel que la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est libre. En déduire que $p \leq n$ et que $f^n = 0$.
- 7. Montrer que s'il existe un endomorphisme g de E tel que $g^2 = f$, alors $2p 1 \leq n$.

On suppose désormais que p=n. Selon la question 6), il existe un vecteur x_0 dans E tel que la famille $\mathscr{B}=(x_0,f(x_0),\ldots,f^{n-1}(x_0))$ soit libre. C'est donc une base de E; on posera $x_i=f^i(x_0)$ pour $i=1,\cdots,n$.

On rappelle que selon la question 3), on a : $\Pi_f = X^n$ car ici, p = n.

- 8. Soit g un endomorphisme de E tel que $g \circ f = f \circ g$. On note $a_0, a_1, \ldots, a_{n-1}$ les coordonnées de $g(x_0)$ dans $\mathscr{B}: g(x_0) = \sum_{i=0}^{n-1} a_i \ x_i = \sum_{i=0}^{n-1} a_i \ f^i(x_0)$. Calculer les coordonnées dans \mathscr{B} du vecteur $g(x_1) = g(f(x_0))$, puis celles de $g(x_2) = g(f^2(x_0))$, ..., de $g(x_{n-1}) = g(f^{n-1}(x_0))$.
 - En déduire que g est un polynôme en f: g = T(f), avec $T \in \mathbb{R}[X]$.
- 9. Soit g un endomorphisme de E tel que $g^2 = \mathrm{id}_E + f$. Montrer que g est un polynôme en f.
- 10. Soient g, h des endomorphismes de E tels que $g^2 = h^2 = \mathrm{id}_E + f$. D'après la question précédente, il existe des polynômes $P, Q \in \mathbb{R}[X]$ tels que g = P(f) et h = Q(f).
 - a) Montrer que $P^2 Q^2$ est divisible par X^n .
 - b) On veut montrer que X^n divise P-Q ou divise P+Q, pour cela on raisonne par l'absurde : on suppose qu'aucun des polynômes P+Q et P-Q ne soit divisible par X^n . Montrer qu'ils sont alors tous deux divisibles par X.
 - Que dire alors du polynôme P? En déduire que g n'est pas injective. Trouver une contradiction. Que peut-on finalement en déduire sur g et h?
 - c) Combien d'endomorphismes de E ont un carré égal à $\mathrm{id}_E + f$? Même question pour les racines carrées de $\alpha \mathrm{id}_E + f$ lorsque α est un réel strictement positif.