Calculatrices interdites. L'exercice et le problème sont indépendants.

Exercice

On pose φ_0 la fonction définie sur $[0, +\infty[$ par

$$\varphi_0: t \mapsto e^{-t^2}$$

1) Justifier que φ_0 est intégrable sur $[0, +\infty[$.

On pose pour tout $x \in [0, +\infty[, \varphi_1(x) = \int_x^{+\infty} e^{-t^2} dt$

- 2) Montrer que φ_1 est de classe \mathscr{C}^1 sur $[0, +\infty[$ et calculer φ'_1 .
- 3) a) Justifier que pour tout $x \in]0, +\infty[$,

$$\varphi_1(x) = \frac{1}{2x}e^{-x^2} - \int_x^{+\infty} \frac{1}{2t^2}e^{-t^2}dt.$$

- b) En déduire un équivalent simple de φ_1 quand x tend vers $+\infty$.
- c) Justifier que φ_1 est intégrable sur $[0, +\infty[$.
- d) Calculer $\int_0^{+\infty} \varphi_1(x) dx = \int_0^{+\infty} \left(\int_x^{+\infty} e^{-t^2} dt \right) dx$.

On pourra intégrer par parties en utilisant 2.

4) Montrer que l'on peut construire une suite de fonctions $(\psi_k)_{k\in\mathbb{N}}$ de classe \mathscr{C}^1 , intégrables sur $[0,+\infty[$ telle que $\psi_0=\varphi_0$ et, pour tout $k\geqslant 0$,

$$\psi_{k+1}: x \mapsto \int_{-\infty}^{+\infty} \psi_k(t) dt$$

On précisera en particulier un équivalent simple de ψ_k en $+\infty$.

Problème

Notations

- \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .
- $\mathbb{K}[X]$ désigne l'ensemble des polynômes à coefficients dans \mathbb{K} . Dans ce problème, on identifie polynômes formels et fonctions polynomiales de \mathbb{K} dans \mathbb{K} associées. On identifie de plus les éléments de \mathbb{K} aux polynômes constants.
- Tout polynôme $p \in \mathbb{K}[X]$ s'écrit de manière unique

$$p = \sum_{k=0}^{+\infty} a_k X^k$$

où (a_k) est une suite à valeurs dans \mathbb{K} nulle à partir d'un certain rang. Si p n'est pas le polynôme nul, son degré $\deg(p)$ est le plus grand entier k tel que $a_k \neq 0$. Par convention, le degré du polynôme nul est -1 (cette convention est inhabituelle).

- Si n est un entier naturel, $\mathbb{K}_n[X]$ désigne le sous-espace vectoriel de $\mathbb{K}[X]$ des polynômes de degré inférieur ou égal à n.
- On note $\mathcal{L}(\mathbb{K}[X])$ l'ensemble des endomorphismes de l'espace vectoriel $\mathbb{K}[X]$.
- On note I l'endomorphisme identité de $\mathbb{K}[X]$.
- Les éléments inversibles de $\mathscr{L}(\mathbb{K}[X])$ sont les endomorphismes bijectifs (automorphismes) de l'espace vectoriel $\mathbb{K}[X]$.
- Pour $T \in \mathcal{L}(\mathbb{K}[X])$ et $p \in \mathbb{K}[X]$, on note Tp = T(p).
- On désigne par D l'endomorphisme de dérivation sur $\mathbb{K}[X]: \forall p \in \mathbb{K}[X], D(p) = Dp = p'$.
- Si T est un endomorphisme de $\mathbb{K}[X]$, on définit la suite d'endomorphismes (T^k) par récurrence : $T^0 = I$ et, pour tout $k \in \mathbb{N}, T^{k+1} = T \circ T^k = T^k \circ T$.

I - Étude d'endomorphismes de $\mathbb{K}[X]$

- **I.A** Soit $a \in \mathbb{K}$. Pour tout $p \in \mathbb{K}[X]$, on pose $E_a(p) = E_a p = p(X + a)$.
- **Q.1.** Montrer que E_a est un automorphisme de $\mathbb{K}[X]$.
- **I.B** À tout $p \in \mathbb{R}[X]$, on associe la fonction J(p) = Jp de \mathbb{R} dans \mathbb{R} définie par

$$\forall x \in \mathbb{R}, \quad J(p)(x) = Jp(x) = \int_{x}^{x+1} p(t)dt$$

- **Q 2.** Montrer que J est un endomorphisme de $\mathbb{R}[X]$.
- ${\bf Q}$ 3. Montrer que J conserve le degré et que J est inversible.
- $\mathbf{I.C}$ À tout $p \in \mathbb{K}[X],$ on associe la fonction L(p) = Lp de \mathbb{K} dans \mathbb{K} définie par

$$\forall x \in \mathbb{K}, \quad L(p)(x) = Lp(x) = -\int_0^{+\infty} e^{-t} p'(x+t) dt$$

2

- **Q 4.** Montrer que $\int_0^{+\infty} e^{-t} t^k dt$ existe pour tout $k \in \mathbb{N}$ et calculer sa valeur.
- ${\bf Q}$ 5. Montrer que L est un endomorphisme de $\mathbb{K}[X].$ Est-il inversible?

II - Formule de Taylor pour les endomorphismes shift-invariants de $\mathbb{K}[X]$

Soit T un endomorphisme de $\mathbb{K}[X]$. On dit que :

- T est shift-invariant si, pour tout $a \in \mathbb{K}, E_a \circ T = T \circ E_a$
- T est un endomorphisme delta si T est shift-invariant et si l'image du polynôme X par T est une constante non nulle : $TX \in \mathbb{K}^*$.

II.A -

- **Q 6.** Soit $a \in \mathbb{K}$. Vérifier que les endomorphismes I et D sont shift-invariants, ainsi que les endomorphismes E_a, J et L définis dans la partie I. Sont-ils des endomorphismes delta?
- **Q 7.** L'ensemble S des endomorphismes shift-invariants de $\mathbb{K}[X]$ est-il stable par combinaison linéaire? par composition? Mêmes questions pour l'ensemble Δ des endomorphismes delta de $\mathbb{K}[X]$.

II.B -

Q 8. Soit $(a_k)_{k\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} . Pour tout polynôme $p\in\mathbb{K}[X]$, montrer que l'expression $\sum_{k=0}^{+\infty}a_kD^kp \text{ a un sens et définit un polynôme de }\mathbb{K}[X].$

On note alors $\sum_{k=0}^{+\infty} a_k D^k$ l'application de $\mathbb{K}[X]$ qui, à $p \in \mathbb{K}[X]$, associe le polynôme $\sum_{k=0}^{+\infty} a_k D^k p$.

On remarquera que cette somme à support infini n'a pas de sens concret. Pour manipuler correctement de telles applications, il conviendra systématiquent de les évaluer afin d'avoir des sommes à support fini.

- **Q 9.** Montrer que, pour toute suite $(a_k)_{k\in\mathbb{N}}$ d'éléments de \mathbb{K} , $\sum_{k=0}^{+\infty} a_k D^k$ est un endomorphisme shift-invariant.
- **Q 10.** Soit $(a_k)_{k\in\mathbb{N}}$ et $(b_k)_{k\in\mathbb{N}}$ des suites d'éléments de \mathbb{K} telles que $\sum_{k=0}^{+\infty} a_k D^k = \sum_{k=0}^{+\infty} b_k D^k$. Montrer que, pour tout $k \in \mathbb{N}$, $a_k = b_k$.

Pour tout $n \in \mathbb{N}$, on définit le polynôme $q_n = \frac{X^n}{n!}$. On se donne T un endomorphisme de $\mathbb{K}[X]$.

Q 11. Montrer que T est un endomorphisme shift-invariant si, et seulement si,

$$T = \sum_{k=0}^{+\infty} (Tq_k)(0)D^k.$$

- **Q 12.** Montrer que deux endomorphismes shift-invariants de $\mathbb{K}[X]$ commutent.
- II.C Dans cette sous-partie, on applique le résultat de la question 11 aux endomorphismes de la partie I.
- **Q 13.** Pour tout $p \in \mathbb{K}[X]$ non nul et $a \in \mathbb{K}$, montrer, à l'aide de la question 11, que

$$p(X+a) = \sum_{k=0}^{\deg(p)} \frac{a^k}{k!} p^{(k)}.$$

où $p^{(k)}$ désigne la dérivée k-ième du polynôme p. Reconnaitre cette formule.

- **Q 14.** Pour $p \in \mathbb{K}[X]$, exprimer Jp en fonction des dérivées $p^{(k)}$ $(k \in \mathbb{N})$ de p.
- **Q 15.** Pour $p \in \mathbb{K}[X]$, exprimer Lp en fonction des dérivées $p^{(k)}$ $(k \in \mathbb{N})$ de p.

- **II.D** Dans cette sous-partie, T est un endomorphisme non nul shift-invariant de $\mathbb{K}[X]$. On rappelle que le degré du polynôme nul est par convention égal à -1 .
- **Q 16.** Montrer qu'il existe un entier naturel n(T) tel que, pour tout polynôme $p \in \mathbb{K}[X]$,

$$\deg(Tp) = \max\{-1, \deg(p) - n(T)\}.$$

- **Q 17.** En déduire Ker(T) en fonction de n(T).
- ${f Q}$ 18. Montrer que les trois assertions suivantes sont équivalentes :
 - (1) T est inversible; (2) $T1 \neq 0$; (3) $\forall p \in \mathbb{K}[X], \deg(Tp) = \deg(p)$.
- \mathbf{Q} 19. Si ces conditions sont vérifiées, montrer que T^{-1} est encore un endomorphisme shift-invariant.
- **II.E** Dans cette sous-partie, T est un endomorphisme delta de $\mathbb{K}[X]$.
- **Q 20.** Montrer qu'il existe une suite de scalaires $(\alpha_k)_{k\in\mathbb{N}}$ vérifiant $\alpha_0=0, \alpha_1\neq 0$ et $T=\sum_{k=1}^{+\infty}\alpha_kD^k$.
- **Q 21.** Montrer qu'il existe un unique endomorphisme U shift-invariant et inversible tel que $T = D \circ U$. Préciser U dans le cas T = D, puis dans le cas T = L.
- **Q 22.** Pour tout polynôme $p \in \mathbb{K}[X]$ non nul, vérifier que $\deg(Tp) = \deg(p) 1$. En déduire $\operatorname{Ker}(T)$ et le spectre de T.
- **Q 23.** Pour $n \in \mathbb{N}$, on note T_n la restriction de T à $\mathbb{K}_n[X]$. Montrer que T_n est un endomorphisme de $\mathbb{K}_n[X]$. Est-il diagonalisable?
- **Q 24.** Déterminer Im (T_n) en fonction de $n \in \mathbb{N}$ et en déduire que T est surjectif.

III - Suite de polynômes associée à un endomorphisme delta

On souhaite montrer que, pour tout endomorphisme delta Q, il existe une unique suite de polynômes $(q_n)_{n\in\mathbb{N}}$ de $\mathbb{K}[X]$ telle que

- $-q_0=1$;
- $-- \forall n \in \mathbb{N}, \deg(q_n) = n;$
- $--\forall n \in \mathbb{N}^*, q_n(0) = 0;$
- $\forall n \in \mathbb{N}^*, Qq_n = q_{n-1}.$

Cette suite sera appelée suite de polynômes associée à l'endomorphisme delta Q.

- III.A Soit Q un endomorphisme delta.
- **Q 25.** Montrer l'existence et l'unicité de la suite $(q_n)_{n\in\mathbb{N}}$ de polynômes associée à Q.
- **Q 26.** Montrer que, pour tout entier naturel $n, \forall (x,y) \in \mathbb{K}^2, q_n(x+y) = \sum_{k=0}^n q_k(x)q_{n-k}(y).$
- **III.B** Réciproquement, soit $(q_n)_{n\in\mathbb{N}}$ une suite de polynômes de $\mathbb{K}[X]$ telle que $\forall n\in\mathbb{N}$, deg $(q_n)=n$ et

$$\forall (x,y) \in \mathbb{K}^2, \quad q_n(x+y) = \sum_{k=0}^n q_k(x)q_{n-k}(y).$$

- **Q 27.** Montrer qu'il existe un unique endomorphisme delta Q dont $(q_n)_{n\in\mathbb{N}}$ est la suite de polynômes associée.
- **III.C** Soit Q un endomorphisme delta, soit $(q_n)_{n\in\mathbb{N}}$ la suite de polynômes associée à Q et soit n un entier naturel.
- **Q 28.** Montrer que la famille (q_0, q_1, \ldots, q_n) est une base de $\mathbb{K}_n[X]$.
- **Q 29.** D'après la question 23, Q induit un endomorphisme de $\mathbb{K}_n[X]$ noté Q_n . Donner sa matrice dans la base précédente. En déduire sa trace et son déterminant.